The finitely generated Hausdorff spectra of a family of pro-p groups

نویسندگان

چکیده

Recently the first example of a family pro-p groups, for p prime, with full normal Hausdorff spectrum was constructed. In this paper we further investigate by computing their finitely generated respect to each five standard filtration series: p-power series, iterated lower p-series, Frattini series and dimension subgroup series. Here spectra these groups consist infinitely many p-adic rational numbers, computation requires rather technical approach. This result also gives evidence non-existence group uncountable spectrum.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the verbal width of finitely generated pro-p groups

Let p be a prime. It is proved that a non-trivial word w from a free group F has finite width in every finitely generated pro-p group if and only if w 6∈ (F ′)pF ′′. Also it is shown that any word w has finite width in a compact p-adic group.

متن کامل

A characterization of finitely generated multiplication modules

 Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...

متن کامل

Finitely Generated Semiautomatic Groups

The present work shows that Cayley automatic groups are semiautomatic and exhibits some further constructions of semiautomatic groups and in particular shows that every finitely generated group of nilpotency class 3 is semiautomatic.

متن کامل

Combinatorics of Finitely Generated Groups

of the Dissertation Combinatorics of Finitely Generated Groups

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2022

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.05.008